

Silver Nanoparticle-Induced Growth of Nanowire-Covered Porous MnO₂ Spheres with Superior Supercapacitance

Yuming Dai, †,‡,§ Shaochun Tang,†,§ Sascha Vongehr,† and Xiangkang Meng*,†

Supporting Information

ABSTRACT: We report a facile, low-cost, ultrasound-assisted synthesis of nanowire-covered porous MnO2 spheres with superior supercapacitance at high charging rates with longterm durability. The use of catalytic silver nanoparticles is crucial to the growth mechanism in the initial stage, and the resulting silver oxides later grow the nanowires in such a way that they always terminate the wires, thus automatically covering the structures and increasing conductivity. The optimal Ag₂O-MnO₂ structures have a specific capacitance of 536.4 F/g at 5 mV/s. At a high scan rate of 100 mV/s, only 200 F/g remain for the reported carbon nanotube/MnO₂ material with an excellent capacitance at low scan rate (1230

F/g, 1 mV/s), while the Ag₂O-MnO₂ reported here still has 417.2 F/g. The material reaches a stable region of 91.3% capacitance retention over 10000 charge/discharge cycles at 5 A/g.

KEYWORDS: Manganese oxide, Supercapacitors, Hierarchical structures, Rapid charging, Long-term stability

INTRODUCTION

One difficulty with supercapacitors is their performance in rapid charge/discharge applications. High capacitance and long-term stability at high charging rates need electrode materials with a high surface area, stable microstructure, and good electrical conductivity.² Because of their pseudocapacitance, ³⁻⁶ transition metal oxides have larger specific capacitance (SC) than carbon materials or conducting polymers.^{7,8} RuO₂ performs best among the oxides, but high cost limits its commercial applications. 9,10 MnO₂ is one of the most promising alternatives because of its high theoretical SC (1370 F/g), low cost, and environmental compatibility. $^{11-14}$ However, in part due to its poor electrical conductivity, the actual SC during rapid charge/ discharging is usually low.

The electrical conductivity of electrode materials can be improved by combining them with conductive materials including carbon materials, $^{15-18}$ conductive oxides like $\mathrm{SnO_2}^{19}$ and $\mathrm{Zn_2SnO_4}^{20}$ and metals such as gold film. 21 However, a combination of conductive oxides with MnO₂ usually needs multi-step coating processes. We will show that our Ag nanoparticle-induced growth process results in a hierarchical nano/microstructure being covered with automatically formed conductive Ag₂O, which is due to a novel growth

Regular shapes and especially one-dimensional nanostructures of transition metal oxides, such as nano wires, rods, and tubes, perform better electrochemically than those with irregular shapes.^{22,23} Hierarchical architectures that involve such nanostructures are more likely to have stable SC because their microsized substrates fix the nanoporous structure.^{24–27} Inspired by this, great progress in developing MnO₂-based supercapacitive materials has been made via hierarchical nano/ microcomposites. However, the SC is still usually much lower with rapid charging and becoming unstable over time, especially with rapid charge/discharge cycles. Recently, electrochemical growth of nanostructured MnO₂ on porous nanogold film²¹ and on sponge-dipped carbon nanotubes¹⁵ approached the theoretical SC of MnO₂ (1370 F/g)²⁸ but only at low charge/ discharge rates (e.g., 1 mV/s); the SC decreases to ~300 F/g at 50 mV/s. 15 Zn₂SnO₄-MnO₂ microfiber hybrid composites show a SC of $62\overline{1.6}$ F/g at 2 mV/s; but only 370 F/g remain at 100 mV/s.²⁰ The costs associated with these materials are high. In addition, long-term stability needs to be improved with MnO₂-based devices.

In this work, we report a facile and low-cost ultrasoundassisted synthesis of nanowire-covered spherical MnO2 structures with high SC with rapid charging and discharging, while long-term durability is also promising. The use of catalytic silver nanoparticles (NPs) is crucial to adjust the growth rates of MnO₂ in the initial and final stages. The electrical conductivity of the material is improved due to the silver oxides being crucially involved in the growth of the nanowires

Received: October 4, 2013 Revised: December 13, 2013 Published: January 5, 2014

[†]Institute of Materials Engineering, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Jiangsu, P.R. China

^{*}School of Materials Engineering, Nanjing Institute of Technology, Jiangsu, P.R. China

in such a way that they are always at the wire tips. The SC is optimized via a systematic variation of concentrations and reaction times, leading to a dense yet short "British-lawn" or rather "AstroTurf-like" nanowire cover over the spheres. The growth mechanism is suggested on the basis of composition and microstructure analysis as well as systematic control experiments. The resulting Ag₂O–MnO₂ structures have a SC of 536.4 F/g at 5 mV/s, which is almost twice the value attainable with pure MnO₂ structures.⁴ This is not the highest SC reported, as discussed above; however, the new material still has 78% of the static SC during rapid charge/discharge cycles. At a high scan rate of 100 mV/s, only 200 F/g remain for the carbon nanotube–MnO₂ material with the excellent reported SC (1230 F/g)¹⁵ at a low scan rate of 1 mV/s, while the Ag₂O–MnO₂ reported here still has 417.2 F/g.

■ EXPERIMENTAL SECTION

Synthesis of Ag Nanoparticles. For solution A, 5 mmol (0.85 g) AgNO $_3$ was dissolved in 10 mL deionized water. For solution B, 2 mmol (0.22 g) NaH $_2$ PO $_2$ was dissolved in 40 mL deionized water. Solution A was added to solution B at 20 drops/min under a violent stir. The mixture was ultrasonicated for 1 h in a thermostatic water bath at 50 °C. The precipitates were collected by centrifugation and repeatedly washed with deionized water.

Synthesis of Ag_2O-MnO_2 Hierarchical Structures. Four mmol (0.68 g) MnSO₄ and 4 mmol (0.92 g) (NH₄)₂S₂O₈ were dissolved in 40 mL deionized water. Eight milligrams of preprepared dried Ag nanoparticles were added. The mixed solution was ultrasonic irradiated for 1 h in a thermostatic water bath at 50 °C. The precipitates were collected, washed, and finally dried in a vacuum oven at 50 °C for 12 h.

Characterizations. The products were characterized with X-ray diffraction (XRD, Ultima-IV, Rigaku) using Cu K α radiation at a scan rate of 10°/min, X-ray photoelectron spectroscopy (XPS, ESCA2000, Thermo) with a CLAM4 hemispherical analyzer, field-emission scanning electron microscopy (SEM, S-4800, Hitachi) at 10 kV, and transmission electron microscopy (TEM, JEM-2100, JEOL) at 200 kV. Energy dispersed X-ray spectroscopy (EDS) was performed on the same scanning electron microscope. The specific surface areas were determined by Brunauer–Emmett–Teller (BET) methods using a surface area analyzer (Tristar-3000, Gold-APP).

Electrochemical Measurements. Cyclic voltammetry (CV) was performed on a workstation (PARSTAT 2273, Ametek) using a three-electrode mode in a 1 M Na₂SO₄ aqueous solution at room temperature. The working electrodes were prepared by mixing and grinding the active materials (70 wt %), acetylene black (20 wt %), and 10 wt % polytetrafluoroethylene for about 20 min with a small amount of ethanol. Then, the mixture was coated onto nickel foam (1 cm²) to form the electrode layer by drying at 120 °C for 10 h. After that, the electrode layer was compressed with 10 MPa. The reference and counter electrodes were Ag/AgCl and platinum foil, respectively. The electrochemical performances of MnO₂-based electrodes were tested using CV between 0 and 1 V at scan rates of 5, 10, 20, 30, 50, and 100 mV/s. Specific capacitance (SC) of MnO₂ was calculated using the following formula

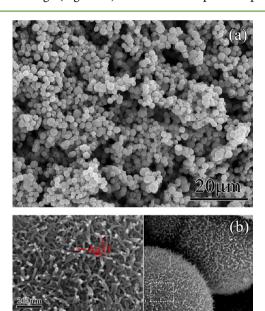
$$SC = \int i dV / v m \Delta V$$

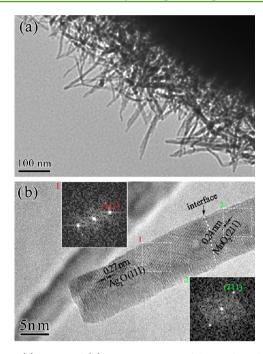
where $\int idV$ is the integral area under the CV curve calculated by the software, ν is the scan rate, m is mass of the active material, and ΔV is the operating potential range. Galvanostatic measurements were on a workstation (CHI660D, Chenhua) using the same electrolytic cell as the CV tests at a charge/discharge current density of 5 A/g and a potential window of 0 to 1 V. Capacitance retention was tested on a battery analyzer (C5 V100 mA, BettaTeQ). The anode is the same as the above-described working electrode, and the cathode is blank nickel foam. They were assembled by using polyethylene (PE) fibrous paper as the separator and 1 M Na₂SO₄ aqueous solution as the electrolyte. The current density and potential windows are the same as those in

the galvanostatic measurements. The capacitance retention of any cycle equals its discharge time divided by the discharge time of the first cycle.

RESULTS AND DISCUSSION

Microscopic and Structural Analysis. A low-magnification SEM image (Figure 1a) shows that the optimized product,




Figure 1. (a) Low and (b) high magnification SEM images of Ag₂O–MnO₂ structures; the inset further magnifies the marked rectangle.

1 µm

which is obtained after a reaction time of 1 h, consists of isolated particles having uniform spherical morphology with a diameter of 2.2 \pm 0.6 μm . A high-magnification image (Figure 1b) reveals that their surfaces are uniformly covered in nanowires. The nanowires have a diameter of 15 \pm 5 nm (inset Figure 1b) and stand almost upright on the surface rather than lying on top of it. The free ends of the wires all terminate in a white dot.

TEM observation (Figure 2a) shows the cross-section of the nanowire cover more clearly. A high-resolution TEM (HRTEM) image (Figure 2b) recorded from a free end of a nanowire gives interplanar spacings of 0.27 and 0.24 nm, consistent with the distances of the (111) planes of Ag₂O (as also confirmed by X-ray photoelectron spectroscopy (XPS) analysis—see below) and (211) planes of MnO₂. Fast Fourier transform (FFT) patterns further confirm that the crystal planes in the selected areas correspond to those ofAg₂O (111) and MnO₂ (211). The Ag₂O resides on the end of the MnO₂ nanowires (inset Figure 1b); thus the white dots in the SEM images are Ag₂O.

In the absence of silver, the reaction is much slower, and irregular MnO₂ (I-MnO₂) nanostructures were synthesized only after 4 h. A low-magnification SEM image (Figure S1a, Supporting Information) shows that the products are loose-packed rather irregular shapes. Further magnification (inset) reveals that the surface consists of plates and not wires.

Figure 2. (a) TEM and (b) HRTEM images of the product shown in Figure 1.

Figure 3a shows X-ray diffraction (XRD) patterns of the Ag₂O-MnO₂ and I-MnO₂ products. All the diffraction peaks correspond to the crystal planes of MnO₂ (JCPDS no. 44-0141). A higher diffraction intensity and the presence of diffraction peaks corresponding to (310), (211), (301), (411), and (521) planes indicate that the Ag₂O-MnO₂ product has a higher crystallinity than I-MnO₂. Peaks for Ag and Ag₂O cannot be found due to their low content in the resulting Ag₂O-MnO₂. XPS surveys (Figure 3b) show the Mn $2p_{3/2}$ (641.7 eV) peak attributed to MnO₂. The Ag $3d_{5/2}$ (367.6 eV) and Ag $3p_{3/2}$ (573.4 eV) peaks correspond to Ag₂O and Ag, respectively. The spectra of O 1s (Figure 3c) of the Ag₂O-MnO₂ sample showed that it consists of an O 1s (MnO₂) peak (529.6 eV) and O 1s (Ag₂O) peak (530.9 eV). The area ratio of O 1s (Ag₂O):O 1s (MnO₂) is about 1:15. The result further proves that the sample consists of Ag₂O and MnO₂. The total Ag atomic percentage is 2.11%. This is higher than the energy dispersed Xray spectroscopy (EDS) result of 0.97% (Figure S2, Supporting Information). XPS analysis collects information of several nanometers depth away from the outer surface of samples, while EDS reaches hundreds of nanometers inside. Thus, the results confirm the presence of Ag₂O on the surface.

Growth Mechanism of Ag₂O-MnO₂ Hierarchical Structures. The growth mechanism is suggested as follows (Figure 4). The Ag NPs (Figure S1c, Supporting Information) dissolve slowly in the presence of (NH₄)₂S₂O₈ into 1.85 mM Ag⁺ ions. They are completely dissolved only after about 10 min even in the absence of MnSO₄ (where the dissolution can be clearly seen) and must be expected to dissolve even slower in the presence of MnSO₄. Control experiments using AgNO₃ solutions with different concentrations around this value (namely, 0.1, 1.0, and 10 mM) instead of Ag NPs did not obtain spherical MnO₂ that are as densely covered with nanowires (Figure S3, Supporting Information). The growth of MnO₂ particles will not be noticeable for 30 min without any Ag. Thus, Ag is necessary from the start, but the release of Ag⁺ ions must be slow for the formation of the desired structures.

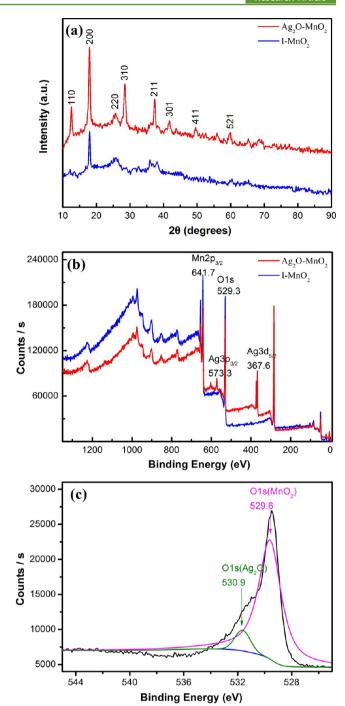


Figure 3. (a) XRD patterns and (b) XPS surveys of the Ag_2O-MnO_2 and I-MnO₂. (c) XPS spectra of O 1s of Ag_2O-MnO_2 .

Addition of 1.85 mM AgNO $_3$ via slow dripping (over 5, 10, and 20 min for Figure S4a—c, Supporting Information, respectively) also does not lead to the desired structures. We have not been able to replace the Ag nanoparticles with any time-dependent addition of Ag $^+$ ions. Therefore, the presence of catalytic Ag nanoparticles is crucial directly; their role is not exhausted in simply providing a slow addition of ions.

The dissolution of Ag NPs in $(NH_4)_2S_2O_8$ releases oxygen. In the presence of Ag^+ and Ag_2O on the Ag NPs acting catalytically, Mn^{2+} ions are oxidized by the released oxygen and $(NH_4)_2S_2O_8$. Because of the subsequently high concentration of MnO_2 , a rapid nucleation ensues. The MnO_2 nuclei combine

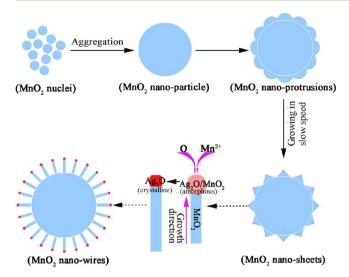
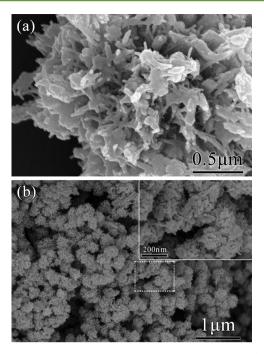



Figure 4. Schematic illustration of the growth process of Ag_2O-MnO_2 .

to form small crystallites. Because of the minimization of surface energy, these crystallites aggregate into spherical shapes (Figure 5a). These steps are not rapid without Ag being present, and the absence of Ag leads to nonspherical aggregates of plate-like NPs (I-MnO₂; Figure S1a, Supporting Information). Ultrasound is also crucial for the formation of the desired product. No agitation at all or stirring resulted in large aggregates with rough flaky surfaces (Figure 6). This crucial influence on the growth mechanism has been seen previously in

Figure 6. SEM images of Ag₂O–MnO₂ products obtained (a) in the absence of any agitation and (b) stirring instead of ultrasound. Other reaction conditions are the same as those for the optimal Ag₂O–MnO₂ structures. Insets are further magnifications of the marked rectangle.

the synthesis of spherical porous palladium nanostructures.²⁹ Besides avoiding and breaking up of larger aggregates,

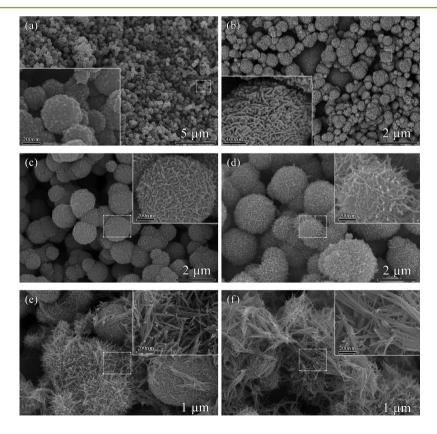


Figure 5. SEM images of the products obtained after different reaction times but otherwise under the same conditions as those for the synthesis of the optimal Ag_2O-MnO_2 : (a) 1 min, (b) 5 min, (c) 30 min, (d) 120 min, (e) 240 min, and (f) 480 min. Insets are further magnifications of the marked rectangle.

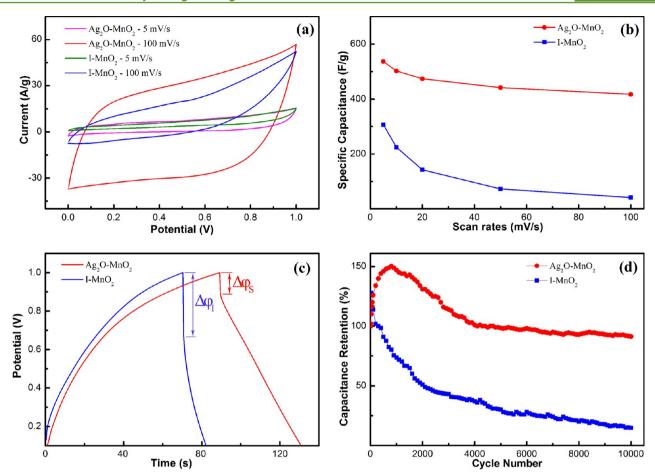


Figure 7. Electrochemical performance of the Ag_2O-MnO_2 and I-MnO₂ electrodes measured in 1 M Na₂SO₄ solution. (a) CV curves at scan rates of 5 and 100 mV/s. (b) SC versus scan rates. (c) Galvanostatic charge/discharge curves at a current density of 5 A/g. (d) Capacitance retention at 5 A/g over 10,000 cycles.

ultrasound improves the transport of crystallites in the solution, leading to denser spheres rather than allowing the growth of flakes first. With a decrease in Mn²⁺ concentration, nucleation of crystallites and growth of new spheres stop, and the remnant Mn²⁺ adds to the already present spheres. An anisotropic growth builds nanosheets on the spheres' surfaces (Figure 5b, c). The ongoing dissolution of the Ag NPs increases the Ag+ ion concentration; thus Ag oxide starts to build up on the surface of the growing nanostructures. Ag₂O does not join into the MnO₂ crystal lattice, but amorphous Ag₂O-MnO₂ puddles gather and stay on the outside of the spheres. These now orientate the growth of MnO2 away from the sphere surface as follows. Just as during nucleation, Ag₂O catalyzes oxidation of Mn²⁺, but now the Mn²⁺ concentration is low. Instead of nucleation and growth of MnO2 particles being triggered, Mn oxide diffuses through the amorphous Ag₂O-MnO₂ and deposits onto the pure MnO2 crystal of the microsphere below. Therefore, the amorphous Ag₂O-MnO₂ lifts itself from the MnO₂ surface, and nanowires form below. This is similar to the solution-liquid-solid growth scenario³⁰ and the vaporliquid-solid growth of Mn-terminated InAs nanowires.³¹ When no more Mn²⁺ is available, the MnO₂ concentration in the amorphous Ag₂O-MnO₂ goes to zero as the last remaining MnO₂ inside of it attaches to the MnO₂ nanowire. Being now pure Ag₂O, the crystallization of the Ag oxide is the last step, leading to the nanowire tips of pure Ag₂O shown in Figure 2b. The analysis of samples taken at different times during the

reaction verifies this picture because the Ag_2O is always at the end of the nanowires, regardless of whether the product has been removed after 1 h or at later times, say after 2, 4, or 8 h (Figure 5d–f, respectively). The samples taken at different times show that the nanowires were still growing at those times; yet the Ag_2O always terminates the wires because it crystallized after the product had been removed from the Mn^{2+} -rich reaction solution.

Electrochemical Studies. Figure 7a shows cyclic voltammetry (CV) curves of the Ag_2O-MnO_2 and the I-MnO₂ at scan rates of 5 and 100 mV/s. The rectangularity of the curves implies that the capacitances are mainly associated with Faradic pseudocapacitance.³² The Ag_2O-MnO_2 curves are more symmetric than those for I-MnO₂. Figure 7b shows the corresponding SC at various scan rates from 5 to 100 mV/s. The SC of the Ag_2O-MnO_2 is 536.4 F/g at a scan rate of 5 mV/s, which is nearly twice that of the I-MnO₂ (306.9 F/g) and the extremely high reported value for pure MnO_2 supercapacitive materials (309 F/g, 5 mV/s).⁴ This is partly attributed to the higher specific surface area of Ag_2O-MnO_2 (92 m²/g) compared to the I-MnO₂ (36 m²/g).

The performance of Ag_2O-MnO_2 becomes interesting at high scan rates like 100 mV/s, where its SC is 12 times that of MnO_2 nanowires (Figure S5a, Supporting Information) with a similar diameter as the nanowires on top of the spheres (Figure 1b, inset). The Ag_2O-MnO_2 samples obtained with the reaction times of 30, 60, 120, 240, and 480 min exhibit SC

values of 381.7, 417.2, 352.6, 295.1, and 217.2 F/g, respectively (Figure S6, Supporting Information). Thus, the high SC of the optimal Ag₂O–MnO₂ is due to a dense yet short "British-lawn"-like coverage of the spheres by nanowires. At 100 mV/s, the SC of I-MnO₂ is 41.6 F/g, only 10% of the low scan rate value. Such a decrease at high scan rates is quite usual. For example, Zn₂SnO₄-covered MnO₂ (621.6 F/g at 5 mV/s) and MnO₂ on sponge-dipped carbon nanotubes (1230 F/g at 1 mV/s) have higher SC values than all our products at low scan rates. However, at 100 mV/s, only 370 F/g remains for Zn₂SnO₄-covered MnO₂²⁰ and only 200 F/g for sponge-dipped carbon nanotubes. ¹⁵ Our Ag₂O–MnO₂ still has a SC of 417.2 F/g even at 100 mV/s (78% of the low scan rate SC); the value is to our knowledge the highest SC reported for Mn oxide-based electrode materials at high scan rates, making it a very promising material for high charge/discharge applications.

The presence of Ag_2O benefits the SC at high scan rates because it facilities electron transport between MnO_2 and the external environment. The potential jumps $\Delta \phi_I$ for I-MnO₂ (Figure 7c), MnO_2 nanowires (Figure S5b, Supporting Information), and Ag_2O-MnO_2 (Figure 7c) are 0.329, 0.219, and 0.114 V, respectively, showing the latter to have the highest conductivity. At a current density of 5 A/g, the discharge time of Ag_2O-MnO_2 (47.6 s) is three times that of I-MnO₂ (16.0 s), meaning that the SC of Ag_2O-MnO_2 is three times that of I-MnO₂, consistent with the CV tests.

Figure 7d shows the capacitance retention of Ag₂O-MnO₂ and I-MnO₂ at a current density of 5 A/g. In the initial stage, the values of the two samples both increase, and the I-MnO₂ reaches the maximum value (128.1%) only at 25th cycle. However, the capacitance retention of the Ag₂O-MnO₂ is 150.2% after about 800 cycles. This interesting phenomenon is due to self-activation; it could be attributed to the active process of the electrode.³³ The hierarchical superstructures of the Ag₂O-MnO₂ bring much a stronger effect of self-activation. After the initial increase, the capacitance of I-MnO₂ decreases monotonously. The Ag₂O-MnO₂ returns to about 100% of the initial SC at around 4000 cycles, after which it stays surprisingly stable, decreasing slowly to 91.3% at the completion of 10,000 cycles. Given the initial 4000 cycles, clearly the material cannot be said to be especially stable; however, a surprisingly stable region of less than a 10% decrease over 6000 cycles is reached with this material, which is promising. Future work should address analyzing the capacitance retention behavior of the Ag_2O-MnO_2 in detail.

We believe the long-term stability to be due to the unique hierarchical structure, particularly the lawn-like nanowire cover being stable on the spherical microparticle beneath. The nanowires of the optimal structure are relatively short, which benefits structural stability. This shortness is also beneficial because the Ag₂O increases conductivity, but it is only present in the short tips of the wires. The longer the wires are the less influence of the tips can be expected. Therefore, further improvement of this new material should aim to decrease the radius of the microsphere while leaving the nanowire cover in this dense "British lawn"-like configuration. Having less material in the spheres may not only increase the capacity per weight, but it may also abate the problematic self-activation behavior over the initial 4000 charging cycles, which may well be due to the electrolyte slowly penetrating the relatively large porous spheres. A further issue of wide interest is the role of the Ag NPs in the synthesis.

CONCLUSION

In summary, a simple and low-cost method is developed to synthesize nanowire-covered MnO₂ spheres with a superior supercapacitance of 417.2 F/g at a fast scan rate of 100 mV/s. While previously reported materials with comparable capacitances at low scan rates cannot perform well at high scan rates, the Ag₂O-MnO₂ nanowire-covered spheres have almost 80% of the low scan rate value. This makes the novel material very promising for fast charging applications and also where charging times may vary significantly while the capacitance should stay constant, as is usual for traditional applications of capacitors. Regarding long-term durability, after first passing through a temporary 50% increase of SC, the material reaches a stable region of 91.3% capacitance retention over 6000 cycles. This suggests analyzing the source of the retention behavior in future work. Apart from providing conductivity, the role of Ag is crucial in the initial and final stages of growth. The final growth mechanism involves an amorphous Ag₂O-MnO₂ mixture and has in this particular form not been reported previously. We suggested decreasing the sphere radius while keeping the dense short nanowire cover for several reasons. Better understanding and control of the initial Ag nanoparticledependent growth process is needed, ideally allowing for controlling it and the final stages independently of each other.

ASSOCIATED CONTENT

S Supporting Information

SEM images of the prepared Ag nanoparticles, I-MnO₂, MnO₂ nanowires, products obtained via replacing Ag nanoparticles by different AgNO₃ concentrations, and products obtained after different reaction times. Electrochemical performances of the MnO₂ nanowires and the products with different reaction times. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Tel.: +86-25-83685585. Fax: +86-25-83595535. E-mail: mengxk@nju.edu.cn.

Author Contributions

[§]Y. Dai and S. Tang contributed equally.

Note:

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the Fundamental Research Funds for the Central Universities, National Natural Science Foundation of China, State Key Program for Basic Research of China, Natural Science Foundation of Jiangsu Province, and Research Innovation Program for College Graduates of Jiangsu Province.

REFERENCES

- (1) Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T.; Yuan, C. Z.; Lou, X. W. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. *Adv. Mater.* **2012**, *24*, 5166–5180.
- (2) Wang, G. P.; Zhang, L.; Zhang, J. J. A review of electrode materials for electrochemical supercapacitors. *Chem. Soc. Rev.* **2012**, *41*, 797–828.
- (3) Kim, T. Y.; Lee, H. W.; Stoller, M.; Dreyer, D. R.; Bielawski, C. W.; Ruoff, R. S.; Suh, K. S. High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes. *ACS Nano* **2011**, *5*, 436–442.

- (4) Yu, C. C.; Zhang, L. X.; Shi, J. L.; Zhao, J. J.; Gao, J. H.; Yan, D. S. A simple template-free strategy to synthesize nanoporous manganese and nickel oxides with narrow pore size distribution, and their electrochemical properties. *Adv. Funct. Mater.* **2008**, *18*, 1544–1554.
- (5) Seredych, M.; Koscinski, M.; Sliwinska-Bartkowiak, M.; Bandosz, T. J. Charge storage accessibility factor as a parameter determining the capacitive performance of nanoporous carbon-based supercapacitors. ACS Sustainable Chem. Eng. 2013, 1, 1024–1032.
- (6) Yuan, C. Z.; Yang, L.; Hou, L. R.; Shen, L. F.; Zhang, X. G.; Lou, X. W. Growth of ultrathin mesoporous Co_3O_4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. *Energy Environ. Sci.* **2012**, *5*, 7883–7887.
- (7) Shaikh, J. S.; Pawar, R. C.; Moholkar, A. V.; Kim, J. H.; Patil, P. S. CuO-PAA hybrid films: Chemical synthesis and supercapacitor behavior. *Appl. Surf. Sci.* **2011**, *257*, 4389–4397.
- (8) Liu, R.; Duay, J.; Lee, S. B. Redox exchange induced MnO_2 nanoparticle enrichment in poly(3,4-ethylenedioxythiophene) nanowires for electrochemical energy storage. *ACS Nano* **2010**, *4*, 4299–4307.
- (9) Xia, H.; Meng, Y. S.; Yuan, G. L.; Cui, C.; Luc, L. A symmetric RuO₂/RuO₂ supercapacitor operating at 1.6 V by using a neutral aqueous electrolyte. *Electrochem. Solid-State Lett.* **2012**, *15*, A60–A63.
- (10) Liu, Y. M.; Zhao, X. Y.; Li, F.; Xia, D. G. Facile synthesis of MnO/C anode materials for lithium-ion batteries. *Electrochim. Acta* **2011**, *56*, 6448–6452.
- (11) Wang, X.; Li, Y. D. Selected-control hydrothermal synthesis of α and β -MnO₂ single crystal nanowires. *J. Am. Chem. Soc.* **2002**, *124*, 2880–2881.
- (12) Cross, A.; Morel, A.; Cormie, A.; Hollenkamp, T.; Donne, S. Enhanced manganese dioxide supercapacitor electrodes produced by electrodeposition. *J. Power Sources* **2011**, *196*, 7847–7853.
- (13) Wang, Y. T.; Lu, A. H.; Zhang, H. L.; Li, W. C. Synthesis of nanostructured mesoporous manganese oxides with three-dimensional frameworks and their application in supercapacitors. *J. Phys. Chem. C* **2011**, *115*, 5413–5421.
- (14) Li, Y.; Xie, H. Q.; Wang, J. F.; Chen, L. F. Preparation and electrochemical performances of α -MnO₂ nanorod for supercapacitor. *Mater. Lett.* **2011**, *65*, 403–405.
- (15) Chen, W.; Rakhi, R. B.; Hu, L. B.; Xie, X.; Cui, Y.; Alshareef, H. N. High-performance nanostructured supercapacitors on a sponge. *Nano Lett.* **2011**, *11*, 5165–5172.
- (16) Wu, Z. S.; Ren, W. C.; Wang, D. W.; Li, F.; Liu, B. L.; Cheng, H. M. High-energy MnO₂ nanowire/graphene and graphene asymmetric electrochemical capacitors. *ACS Nano* **2010**, *4*, 5835–5842.
- (17) Yan, J.; Fan, Z. J.; Wei, T.; Qian, W. Z.; Zhang, M. L.; Wei, F. Fast and reversible surface redox reaction of graphene– MnO_2 composites as supercapacitor electrodes. *Carbon* **2010**, 48, 3825–3833.
- (18) Lei, Z. B.; Zhang, J. T.; Zhao, X. S. Ultrathin MnO₂ nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes. *J. Mater. Chem.* **2012**, *22*, 153–160.
- (19) Li, R. Z.; Ren, X.; Zhang, F.; Du, C.; Liu, J. P. Synthesis of Fe₃O₄/SnO₂ core-shell nanorod film and its application as a thin-film supercapacitor electrode. *Chem. Commun.* **2012**, *48*, 5010–5012.
- (20) Bao, L. H.; Zang, J. F.; Li, X. D. Flexible Zn₂SnO₄/MnO₂ core/shell nanocable—carbon microfiber hybrid composites for high-performance supercapacitor electrodes. *Nano Lett.* **2011**, *11*, 1215—1220
- (21) Lang, X. Y.; Hirata, A.; Fujita, T.; Chen, M. W. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. *Nat. Nanotechnol.* **2011**, *6*, 232–236.
- (22) Wei, W. F.; Cui, X. W.; Chen, W. X.; Ivey, D. G. Manganese oxide-based materials as electrochemical supercapacitor electrodes. *Chem. Soc. Rev.* **2011**, *40*, 1697–1721.
- (23) Lu, Q.; Chen, J.; Xiao, J. Q. Nanostructured electrodes for high-performance pseudocapacitors. *Angew. Chem., Int. Ed.* **2013**, *52*, 1882–1889.
- (24) Wang, D. W.; Li, F.; Liu, M.; Lu, G. Q.; Cheng, H. M. 3D aperiodic hierarchical porous graphitic carbon material for high-rate

- electrochemical capacitive energy storage. *Angew. Chem., Int. Ed.* **2008**, 47, 373–376.
- (25) Lopez, M. C.; Ortiz, G. F.; Lavela, P.; Alcantara, R.; Tirado, J. L. Improved energy storage solution based on hybrid oxide materials. *ACS Sustainable Chem. Eng.* **2013**, *1*, 46–56.
- (26) Lu, X. H.; Yu, M. H.; Wang, G. M.; Zhai, T.; Xie, S. L.; Ling, Y. C.; Tong, Y. X.; Li, Y. H-TiO₂@MnO₂//H-TiO₂@C core-shell nanowires for high performance and flexible asymmetric supercapacitors. *Adv. Mater.* **2013**, 25, 267–272.
- (27) Yang, P. H.; Xiao, X.; Li, Y. Z.; Ding, Y.; Qiang, P. F.; Tan, X. H.; Mai, W. J.; Lin, Z. Y.; Wu, W. Z.; Li, T. Q.; et al. Hydrogenated ZnO core-shell nanocables for flexible supercapacitors and self-powered systems. ACS Nano 2013, 7, 2617–2626.
- (28) Toupin, M.; Brousse, T.; Belanger, D. Charge storage mechanism of MnO₂ electrode used in aqueous electrochemical capacitor. *Chem. Mater.* **2004**, *16*, 3184–3190.
- (29) Tang, S. C.; Vongehr, S.; Zheng, Z.; Ren, H.; Meng, X. K. Facile and rapid synthesis of spherical porous palladium nanostructures with high catalytic activity for formic acid electro-oxidation. *Nanotechnology* **2012**, *23*.
- (30) Trentler, T. J.; Hickman, K. M.; Goel, S. C.; Viano, A. M.; Gibbons, P. C.; Buhro, W. E. Solution—liquid—solid growth of crystalline III—V semiconductors: An analogy to vapor-liquid-solid growth. *Science* **1995**, *270*, 1791—1794.
- (31) May, S. J.; Zheng, J. G.; Wessels, B. W.; Lauhon, L. J. Dendritic nanowire growth mediated by a self-assembled catalyst. *Adv. Mater.* **2005**, *17*, 598–602.
- (32) Burke, A. Ultracapacitors: Why, how, and where is the technology. *J. Power Sources* **2000**, *91*, 37–50.
- (33) Lu, X. H.; Zheng, D. Z.; Zhai, T.; Liu, Z. Q.; Huang, Y. Y.; Xie, S. L.; Tong, Y. X. Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor. *Energ. Environ. Sci.* **2011**, *4*, 2915–2921.